
How immutability,
functional programming,
databases and reactivity

change front-end
by Nikita Prokopov

@nikitonsky

echo

State of the Web

Thick
SERVER

Thin
CLIENT

Universal
computing

device

Universal
computing

device

We don’t write
client-server anymore.

We write self-su!cient
applications

Server
Storage
Network
Queues
Cluster

...

Client
UI

Network
?..

When do you want a storage?

Big state
Complex state
Complex access patterns

Why storage?

Transactions
Persistence
Distributed state

Why storage?

Lightweight in-memory data
structure that has properties of
the database

DataScript

<Entity, Attribute, Value>

Data Model

<1, name, Ivan>
<1, age, 20>
<2, name, Oleg>
<2, friends, 3>
<2, friends, 1>
<3, name, Petr>

Sparse, irregular data
Multi-valued attributes
Reverse references

Data Model

Fast lookups and scans
E!cient row, column, graph
access

Why Indexes?

Declarative, compact,
optimizable

Why Queries?

~ SQL + Recursion
 hierarchies, graph traversals

What’s Datalog?

(d/q '[:!nd ?dep (sum ?sal) (avg ?sal)
:in $?me
:where [?me :works ?dep]

[?person :works ?dep]
[?person :earns ?sal]]

db
[:email "prokopov@gmail.com])

[[(friend ?a ?b)
 [?a :friend ?b]]

 [(friend ?a ?b)
 [?a :friend ?x]
 (friend ?x ?b)]]

Queries over collections
Cross-DB joins
User fns/predicates in queries

Superpowers

What’s immutability?

db = transact(db , tx)2 1

Database is a value

Testing, mocking

What-if speculations

History tracking

Why immutability?

E!cient immutability

db → db →db → db → db → ...21 3 4 5

Just data
Custom user fns
Transaction log

Transactions

[[:db/add 1 :earns 100]
 [:db/retract 2 :name "Ivan"]
 [:db/add 2 :name "Oleg"]]

Listen for transactions queue
Run queries over transaction
data

Reactive DB

B-Tree indexes
Load segments on demand
Pluggable storages

Persistence
(Work in Progress)

Syncing two databases is hard
Reality is N-to-N

Data sync is hard

Everything will change all the
time, in no particular order

Linear logs
Serializable transactions
Optimistic local updates

Data sync
(Work in Progress)

Small, focused, decomplected
Plays well with others
A good foundation

DataScript

Precursor
LightMesh
Cognician

bitfountain
PartsBox
I am Fy

They use DataScript

Thanks!

 github.com/tonsky/datascript
@nikitonsky

